
HIGH PERFORMANCE COMPUTING OPERATIONAL REVIEW
(HPCOR)
WORKSHOP RECAP
Nick Romero

Catalyst Team Lead

Argonne Leadership Computing Facility

1

Acknowledgements
Steering Committee
Katherine Riley, ANL, Chair
Katie Antypas, LBNL
Scott Futral, LLNL
Richard Gerber, LBNL
Dave Goodwin, SC
Barbara Helland, SC
Thuc Hoang, NNSA
Paul Messina, ANL
Joel Stevenson, SNL
Tjerk Straatsma, ORNL
Tim Williams, ANL
Cornell Wright, LANL

Argonne Leadership Computing Facility (ALCF) is a DOE Office of Science User
Facility supported under Contract DE-AC02-06CH11357.

2HPCOR&2014+
System Configuration (D1SA)

Co-Chairs:

Clay England (OLCF) &
Jason Hick (NERSC)

1

HPCOR 2015

3

Application	developers

Compute	facility	staff

Vendors

Library/tool	developers

Program	managers
Sep	15-17,	2015

• Best practices for
scientific software
architecture

• Especially those that
increase portability
and performance

• Consider impact over
next 10 years

www.orau.gov/hpcor2015

About 70 Attendees

4

NNSA
39%

SC
22%

ASCR	
Facilities
25%

University
9%

Other
4%

Industry
1%

33 White Papers

5

¤ Language

¤ Lines of code

¤ Primary methods

¤ Types of problems/domains/science
application problems

¤ Scale of resources commonly used for
production runs

¤ Supercomputers regularly used

¤ Libraries/tools for prototyping

¤ Libraries/tools for production science
campaigns

¤ Describe efforts to develop code
(application, library, etc.) portable across
diverse architectures.

¤ Where were the abstractions?

¤ How much code re-use was possible? If
something was not possible, please
describe why.

¤ What successes have you had with
performant code across difference
architectures? Were the same algorithms
applicable at all across the architectures?

¤ What approaches did you reject and why?
What was the leading contender rejected?

¤ What is your greatest fear going to
exascale for application portability and
functionality?

Three Breakouts

6

1. Application Architecture

¥ Data structures/data movement?

¥ Abstractions/parallelism?

2. Libraries and Tools

¥ Most commonly used parts of tools and libraries?

¥ Portability, performance, sustainability?

3. Software Engineering

¥ Large changes to scientific codes?

¥ Advance apps with lots of inertia?

• Best	practices

• Failures

• Niche/emerging	solutions

• Opportunities

Best Practices

7

¤ Two layers of abstraction:

¥ inter-node

¥ intra-node – swap for different architectures

¤ Virtually all applications use high-level
libraries è libraries work. Use libraries.*

¤ Wide adoption of libs that perform well

¥ FFTW, SuperLU, ScaLAPACK, …

¤ Portable, well-defined interfaces that
work:

¥ BLAS, MPI, HDF5, PAPI, …

¤ Lightweight tools are effective

¤ Porting codes: center of excellence
approach has worked well

¤ Testing

¥ Modernization/legacy apps: introduce
abstractions/facades and tests using those
interfaces

¡ Later, change/specialize code beneath facades

¡ Pay back technical debt

¥ Use science as incentive/motivation:
quality/reproducibility of results

¤ Training: 3-day mandatory software
engineering training (including managers)

Niche/Emerging Solutions

8

¤ Future C++ standard language features for
portability

¤ Avoid dependence on outside libraries*

¤ Frameworks like RAJA and Kokkos

¤ Domain specific software stacks

¥ USQCD stack — solvers, I/O, operations,
comm.

¥ MOOSE — nuclear fuels/materials modeling

¥ FenICS — differential equations solution by
finite element methods

¥ SPIRAL — DSP algorithms (autogenerate
platform-tuned)

¥ TCE — tensor contraction engine (NWChem)

¤ Lightweight, automated profiling tools
that work at scale: HPM

¤ Vendor tools are used and useful

¤ Test driven development

¤ Multiplatform, multi-center automated
build and test

¤ Provenance: data, versions, library
versions, compiler versions

¥ Workflows to manage

Failures

9

¤ Using vendor proprietary code & libraries

¤ OpenCL

¤ Portability via two code branches
(Common! Good?)

¤ Number and variety of libraries is growing
beyond our ability to support them

¤ Sustainability, long-term support lacking

¤ Libraries don’t necessarily interoperate
(different programming/threading models)

¤ Inconsistent software environments across
HPC centers

¤ Hero codes (single developer, long-lived
code)

¤ Big bang code merges

¤ Translation from prototype-like codes
(Matlab by scientist) to compiled C++ code

¥ Scientist unable to work with it

¤ Unclear/unspecified support models for:
community compilers, community
libraries, ….

Opportunities

10

¤ Develop tools that will enable portability

¤ Train application engineers

¤ Career opportunities for staff with
crossover expertise

¤ OpenMP 4.x – not demonstrated yet

¤ Provide access and support to tools and
library developers at HPC centers

¤ Common base software environment
across HPC Centers

¤ Performance portability: encourage
investment, adoption, & guidance

¤ DOE investment in standards committees
(OpenMP, C++, …)

¤ Facilities provide policies and mechanisms
for automatic build and test: “auto-login”

¤ Develop best practices—knowledge base,
training

¥ OpenMP

¥ Memory hierarchy

Tips & Quips

11

“Valley	of	death”	between	
research	&	production

When	developing	new	algorithm,	
develop	on	at	least	two	architectures.

Users	should	be	able	to	run	the	tests,	
not	just	developers.

Motivate	SWE	practices	with	success	stories—
better	than	horror	stories.

Realize,	accept	the	full	cost	
of	software	development. Common	fear,	looking	ahead:

Loss	of,	lack	of	funding	for,	developers—to	get	
software	to	production	and	keep	it	in	production.

